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N O T A T I O N  

is the injection p r e s s u r e  in in jec tor  capi l lary;  
Is  the p r e s s u r e  at exi t  f r o m  recep to r  capi l la ry ;  
is the p r e s s u r e  in in jec tor  capi l la ry  with je t  at  the s tabi l i ty  threshold;  
Is the p r e s s u r e  in r e cep t o r  capi l la ry  with je t  at the stabil i ty threshold;  
is  the dis tance between or i f i ces  of in jector  and r ecep to r  cap i l l a r ies ;  
~s the dis tance f r o m  capi l la ry  axis to ref lec t ing  sur face ;  
is the inside d i am e t e r  of capi l la ry ;  
Is the acoust ic  f requency;  
is the Reynolds number ;  
is the ave rage  flow velocity;  
is the k inemat ic  viscosity; 
ms the Strouhal number .  
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FRICTION AND THE VELOCITY AND GAS-CONTENT 

PROFILES OF A TURBULENT GAS - LIQUID FLOW 

A.  V .  G o r i n  UDC 532.529.5 

The l imit ing re la t ive  f r ic t ion law is used to der ive  analyt ical  express ions  for the f r ic t ional  s t r e s s  
as well  as the veloci ty  and gas -con ten t  dis t r ibut ions in the c r o s s  sect ion of a boundary l aye r  and a 
pipe. 

Only a l imited number  of theore t ica l  pape r s  to date has any a t tempt  been made to solve the p rob lem of 
calculat ing the hydrodynamic  c h a r a c t e r i s t i c s  assoc ia ted  with the turbulent  flow of g a s - l i q u i d  mix tu res .  In the 
major i ty  of those pape r s  the two-phase  s y s t e m  is r ega rded  as a local ly homogeneous med ium amenable  to the 
methods and assumpt ions  commonly used in the theory of s ing le-phase  turbulent  flows. For  example ,  Bankoff 
[1] pos tu la tes  that the tangential  s t r e s s  is uni form throughout the channel c ros s  sect ion and the mixing length 
is the s ame  as for  s ing le -phase  turbulent  flow. Brown and Kranich [2] use a logar i thmic  dis tr ibut ion function 
for  the veloci ty  of the mix tu re  in the bubble-flow r eg ime ,  neglect ing the re la t ive  veloci ty  between the phases .  
Beattie [3] t r e a t s  the bubbles as cavi t ies  d is t r ibuted in propor t ion  to the veloci ty  dis tr ibut ion of the liquid and 
adopts the same  assumpt ions  as in [1]. Levy [4] has der ived dis t r ibut ions of the veloci ty  and density of the 
mix tu re  and the p r e s s u r e  drop on the basis  of Van D r i e s t ' s  modificat ion of mixing-length theory.  Here  the 
turbulent  constants  a re  considered to be the same  as  for  s ing le-phase  liquid flow. Sato and Sekoguchi [5] r e -  
gard the bubbles as cavi t ies ,  the p r e sence  of which has the ef fec t  of c rea t ing  fluctuations of the liquid veloci ty 
(over and above the independently exis t ing  s ing le -phase  turbulent  f luctuations of the liquid velocity) due to flow 
around bubbles.  This  p r o c e s s  induces additional turbulent  s t r e s s e s .  The bubble function is considered to be 
a given quantity. Kashcheev and Muranov [6] have calculated the veloci ty prof i le  of a mix ture  for  annula r -  
m i s t  flow, rep lac ing  the two-phase  core  by a homogeneous flow and invoking the basic  assumpt ions  of s e m i -  
emp i r i ca l  turbulence theor ies .  

The fundamental  p rob lem that a r i s e s  in the rea l iza t ion of a local ly homogeneous model is whether  or not 
it  is just if ied to use  the turbulence constants  for  s ing le-phase  flow. Tong [7], for  example ,  concludes on the 

T rans l a t ed  f r o m  Inzhenerno-F iz i chesk i i  Zhurnal ,  Vol. 35, No. 3, pp. 415-423, Sep tember ,  1978. Or ig i -  
nal a r t i c le  submit ted June 27, 1977. 
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bas is  of an analys is  of the exper imenta l  data that  the value of the mixing- length  constant  at  a cer ta in  dis tance 
f r o m  the wall  is much s m a l l e r  than for  the s ing le -phase  liquid. 

In the p r e s e n t  a r t i c le  we calculate the f r ic t ion  lo s ses  and of veloci ty  and gas-conten t  dis t r ibut ions of the 
mix ture  in the c ro s s  sect ion of the flow channel on the bas i s  of the theory of the l imit ing re la t ive  f r ic t ion law 
developed for  a turbulent  boundary l aye r  of a compres s ib l e  gas. 

We r e g a r d  an i so the rma l  two-phase  s y s t em as a continuum with physical  p r o p e r t i e s  that depend on the 
gas content,  and for  the turbulent  f r ic t ional  s t r e s s  r we use the equation [4] 

"c = p u ' o ' +  u p ' i f ,  (1) 

in which the o v e r b a r  s ignif ies  t ime averag ing  in the cus tomary  sense  for  turbulence p rob l ems .  

The fluctuation components  a re  de te rmined  as follows in accordance  with mixing- length  theory (on the 
assumpt ion  that  the turbulent  t r an s f e r  of momen tum and density is identical): 

u ' =  v ' =  / (d~dy), p ' =  l (dp~dy); 

the t r a n s v e r s e  coordinate y is m e a s u r e d  away f rom the plate (channel wall). 

Substituting these expres s ions  into Eq. (1), we obtain 

~=t~ d~ d ~  (2) 
d y  dy  

To de te rmine  the re la t ionship  between ~ and E (we drop the ove rba r  f r o m  now on) we a s sume  s imi la r i ty  
of the veloci ty  and m a s s - c o n c e n t r a t i o n  fields:  

u _ c - -  c w  ( 3 )  

U m C m ~ C w 

The following expres s ion  holds for  the local  densi ty of the two-phase  sys tem:  

P = P z ( 1 - - ~ )  +Pg~. 

The volume concentrat ion q~ is re la ted  to the m a s s  concentrat ion c by the equation 

c = q~pe/p. (4) 

F r o m  expres s ions  (3) and (4) we obtain for  the density of the medium (assuming that c w = 0) 

P~ (5) p =  
1 - -  A (u/urn) 

Here  A = 1 - p / / p  m. 

Thus ,  on the bas is  of (5) we can wri te  Eq. (2) in the f o r m  

" = P~ 1 - -  A u / u  m dy  " (6) 

We use  the re la t ive  formula t ion  of [8, 9] for  the f r ic t ion  law, genera l ized  in [10]. As the "s tandard"  
flow we take an incompres s ib l e  fluid flow with p a r a m e t e r s  cor responding  to the values  for  our c o m p r e s s i b l e  
fluid at  the outer  boundary of the boundary l aye r  (channel axis).  Here ina f t e r  we designate the s tandard-f low 
p a r a m e t e r s  by subsc r ip t  zero .  

We introduce the d imens ion less  v a r i a b l e s  

to --- U/Urn; ~ : x/'cw; ~ = l/8; ~ = y/6; C t --- 2Tw/prJz~ , 

whereupon Eq. (6) acqu i res  the f o r m  

%~ -~0 = , P m  x Xlr -r 0 1--Aco ' (7) 

w i th  

= (c /Clo)R~.  (S) 
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In (8) the compar i son  is made for  Re = idem. 

We in tegra te  Eq. (7) a c r o s s  the l ayer  so that 

ZxFll2=( P, l ' l '  ~ 
\P .~ /  .J 

where 
T o  1 -- Ar 

(9) 

1 

z = (Cso/2) '/'> ~ (.7];'/4) ~ .  

It has been shown [8] that as Re ~ ~ the quanti t ies  ~ l  - " "  0, ~ l  - "  0, and Z - -  1. We postulate  that 

To/'~ = l, l/l o = k = coast, 

and k c h a r a c t e r i z e s  the influence of tlae "second" phase on the mixing length in the mixture .  
f rom (9) that as Re ~ ~o 

(10)  

It  then follows 

xtr~= ProP-A-z[ kln (Pm/Pt)l-- p~lp~ ] 2 .  (11) 

We now obtain the veloci ty  and density dis t r ibut ions of the medium.  In tegra t ing  Eq. (7), we wri te  

1 1 

)5 ( ) (o ,  I. r ~o 1 ' "  eo, "~o 4 
\ -~--~ T o  ~ V 1 - - A o  = l~'0 " (12) 

co 

I t  has been shown [9] that 

l 

)'" T.o-: [( c,0 ~0 a = I-% (13) J~, 2 . ' 
/ 2 ) i / 2  ,, , where  ~ 0 = (1 + 1/~0) (of0 In f is the d imens ion less  veloci ty under  s tandard conditions and vt 0 is the K a r m a n  con-  

s tant  for  s ing le-phase  flow. Equation (12) the re fo re  takes the fo rm 

! 

(P-~-~)'I'~ ~-~0 ( w~< T' ),I, l--Aod~ _1_%. 
o 

For  la rge  values  of the Reynolds number  Eq. (13) goes over  to the l imit ing expres s ion ,  so that as Re ~ oo we 
obtain approx imate ly  

i ~ 112 do tit, l</2 1 o lug, 
-~o 1 - -  A~" • - -  

whence,  bear ing  re la t ions  (10) and (11) and mind,  we readi ly  deduce 

o = ( l - - ~ n  Pt 1 /  ( 1 - -  PJPrn)' 
" - - ~ m / /  

(1 4) 

where  the power exponent n is given by the expres s ion  

#l-- 

For  the densi ty dis t r ibut ion a c r o s s  the l aye r  (channel) we have,  according  to (5), 

p = pm~ -n. 

The dis tr ibut ion of the concentrat ion obeys the law 

<'=(1 " 
Pz Pz j" 

(15) 
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Fig. 1. Compar i son  of calculated t rue  
gas-conten t  prof i les  (solid curves)  with 
expe r imen ta l  data of [12] (points). 1) 
d = 24 m m ,  w~ = 0.5 m / s e e ,  wg = 1.44 
m/sec ;  2) 24 m m ,  1.5 m / s e c ,  2.83 m /  
sec;  3) 69 m m ,  1.5 m m / s e c ,  3.4 m/sec ;  
4) 24 ram,  0.5 m / s e c ,  4.69 m/sec ;  5) 69 
m m ,  1.5 m / s e c ,  5.94 m/sec .  

We note that in plotting the veloci ty  and gas -conten t  p rof i les  it is not n e c e s s a r y  to know k, because it cancels  
out in the course  of the computat ions.  

The foregoing analys is  is valid for  a pipe or  for  a plane channel. 

We now consider  the case  of a c i r cu la r  pipe of radius  R. The values of Pm and u m on the pipe axis a r e  
found in t e r m s  of the m a s s  flow ra te  of the gas Gg and the total m a s s  flow ra te  of the gas and liquid G. We de-  
fine the ave rage  pipe-f low c h a r a c t e r i s t i c s  as follows: 

1) the ave rage  densi ty of the mix tu re  <p) is defined as 
1 
I 2p m 

<P>---- 2. (1--~)pa~---- (1 - -  n) (2 - -  n) ' 
O 

where  ~ = y/R; 

2) the c r o s s - s e c t i o n  ave rage  veloci ty  of the mix tu re  <u) has the f o r m  

< u > = 1 - -  ptlpm Pm [ 1 -?, n)  (2 -F n) ' 
(16) 

3) the total m a s s  flow ra te  G a c r o s s  unit a rea  is 

I 

G = 2  (1--~)pua~: l--pz/p,a Pz 
0 

4) the m a s s  flow ra te  of the gas Gg a c r o s s  unit a rea  can be de te rmined  f r o m  the re la t ion  

1 

o 

so that the re la t ive  m a s s - f l o w  gas content is given by the express ion  

(17) 

G e u,,J < u > 1 - - P t / P , ,  

X=--G-= O/pe--I " <O>Ip~--I " 
(18) 
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Fig.  2. C o m p a r i s o n  of ca lcu la ted  ve loc i ty  (u, m/sec )  and 
g a s - c o n t e n t  p ro f i l e s  (solid curves)  with expe r imen t a l  data of  
[3]. 1) Veloc i ty ;  2) gas  concen t ra t ion ;  a) d = 80 ram,  G = 
1000 kg/m2sec ,  @> = 0.211, P = 20.2-  106 N/m2; b) d = 25.1 
ram,  G = 3799 kg/m2sec ,  X = 0.155, P = 50 .105 N/m2; dashed  
c u r v e s :  app rox ima t ion  cu rves  f r o m  [11], ~0/r a = 1-~5.B8; u /  

u m = 1-~3"77. 

F o r  s tab i l i zed  pipe flow the e x p r e s s i o n  fo r  @~ m u s t  be wr i t t en  with r e g a r d  fo r  the ra t io  <Um>/<u>, b e -  
cause  in b o u n d a r y - l a y e r  t heo ry  the coef f ic ien t  of  f r i c t ion  is r e f e r r e d  to the m a x i m u m  ve loc i ty ;  fo r  pipe flow 
this coef f ic ien t  is r e f e r r e d  to the m a s s - f l o w  a v e r a g e  ve loc i ty .  On the bas is  of these cons ide ra t i ons  we wr i t e  
f o r  s tab i l i zed  condi t ions  

whence  with r e g a r d  fo r  (16) we obtain  

Re = ~Z| 1 - -  2pJpm ( 1 + n) -~ (2 -I- n) -I h~' 

w h e r e  h = (<u>)/Um)0; ~ = 2Tw/(Om<U)2).  

The g raph ica l  dependence  of  h on Re for  i s o t h e r m a l  flow in smooth  pipes is given in [ 8 ] .  

fo r  the exponent  in the ve loc i ty  and g a s - c o n t e n t  d i s t r ibu t ions  takes  the f o r m  

)] 
0 Re um / \  um ]0J 

The re l a t ion  

n -  2x0 lrl Pm . (19) 

Solving Eqs.  (17) and (18) with r e g a r d  fo r  the e x p r e s s i o n  (19) for  n,  we can de t e rmine  Pm and um.  

The p ro f i l e s  obtained fo r  the ve loc i ty  (14) and the t rue  gas content  (15) with the exponent  n ca lcu la ted  
a c c o r d i n g  to (19) a r e  c o m p a r e d  in F igs .  1 and 2 with ce r t a in  expe r imen ta l  data [3, 12]. The f r i c t ion  coef f i -  
c ient  ~0 is d e t e r m i n e d  a c c o r d i n g  to P rand t l  law 

~-1/2 = 2 lg (Re ~/2) _ 0.8, Re --= 2GR/Ih. 

As is evident  f r o m  the g raphs ,  the theo ry  p r e d i c t s  a r e l a t ive ly  f la t  d i s t r ibu t ion  of the t rue  vo lume con-  
cen t ra t ion  of gas ~0 in the pipe c r o s s  sec t ion  (Fig. 1). Some d i s c r e p a n c i e s  of the ca lcu la ted  p ro f i l e s  in the 
immed ia t e  wal l  zone a r e  to be expec ted ,  because  the ca lcu la t ions  a re  c a r r i e d  out fo r  Re ~ ~, making  it p o s -  
s ible to exclude the v i scous  sub laye r  f r o m  cons ide ra t ion ,  but e r r o r  is none the less  in t roduced .  It  is impor t an t  
to note the good a g r e e m e n t  between theory  and e x p e r i m e n t  for  the ve loc i ty  d i s t r ibu t ion  of the g a s - l i q u i d  m i x -  
ture  (Fig. 2). 

Us ing  the e x p r e s s i o n s  de r ived  above for  the a v e r a g e  flow c h a r a c t e r i s t i c s  of a g a s - l i q u i d  m i x t u r e ,  we 
obtain an e x p r e s s i o n  for  the Mar t ine l l i  d i m e n s i o n l e s s  group r def ined as  fo l lows:  

8Tw @L20k. (20) 
Pz (G/Pl) ~ 
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Fig. 3. Comparison of the results of fric- 

tion ca lcu la t ions  (dashed curves)  with the 
ca lcu la t ions  of Levy  (solid curves)  and e x -  
p e r i m e n t a l  data [4] f o r  flow of boi l ing w a -  
t e r  in a v e r t i c a l  channel  at  P = 140.105 N/  
m 2. a) G = 3 .4 .106  kg/m2h, Re = 53,000, 
channel  d imens ions  690 m m  x 25.4 m i n x  
2.5 m m ;  b) G = 7.3" 106 kg/m2h; 1) channel  
690 m m  x 25.4 m m  x 2.5 ram;  Re = 112,000; 
2) channel  690 m m  • 25.4 m m  • 1.3 m m ,  
Re = 60,000; c) G = 19 .5 .106 kg/m2h, Re = 
300,000,  channel  690 m m  • 25.4 m m •  2.5 
m m .  

w h e r e  ~ is the f r i c t ion  coef f ic ien t  fo r  s i ng l e -phase  fluid flow with total  m a s s  flow 

I 

which  c o r r e s p o n d s  to the tangent ia l  s t r e s s  fo r  s i ng l e -phase  l iquid f low, and 

Using r e l a t ion  (17) fo r  the m a s s  flow ra t e  p e r  uni t  a r e a ,  we obtain 

8~r~ 8~2• 
Pz (G/Pl) 2 (1 - -  ( p )/pz) z 

Here/3  = pl-pm/Pmuml/xo(Vw/;~)  1/2 is a p a r a m e t e r  in t roduced  by Levy.  
We r e p r e s e n t  it in the f o r m  

j~ = Pz - -  1 1 ~w % p,,~ 1/2 A Pm c]o 
_ _  . . /2 2 

X o T o P m m  Pl X0 Pl 2 

F o r  l a rge  va lues  of the Reyno lds  n u m b e r  q ~ @oo, and for /3  we obtain approx imate ly /3  = kn. 

.Z0~. = 8k,n2• [ 1 p m 2 ] - 2 .  
p~ (1 - -n)  (2 - -n)  

(21) 

(22) 

Le t  us examine  it in c l o s e r  detai l .  

We f inal ly  have 

(23) 

The r e su l t s  of  ou r  ca lcu la t ion  of  the Mar t ine l l i  p a r a m e t e r  @~,0 (dashed curves)  a c c o r d i n g  to (23) fo r  k = 
1 a r e  c o m p a r e d  in Fig.  3 with the ca lcu la t ions  of  Levy  [4] (solid curves)  and the e x p e r i m e n t a l  data of  Sher and 
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Fig. 4. Comparison of the resul ts  of fr ict ion calculations with experimental  data of Mus- 
cettola f rom [7] (a, b) and [13] (c) and with the resul ts  of other authors for P = 70" 105 N/ 
m 2. a) d = 5 ram: I) G = 11.5 kg/m2sec, Re = 5000; II) G = 43.7 kg/m2sec, Re = 22,700; b) 
d = 10.1 mm:  I) G = 11.0 kg/m2sec, Re = 11,500; II) F = 31.8 kg/m2sec, Re = 33,400; c) d = 
8.2 mm:  I) G = 10.7 kg/m2sec, Re = 9100; II) G = 40.1 kg/m2sec, Re = 34,200; 1) data of 
Levy; 2) Mart inel l iandNelson;  3) present  calculation; 4) Marcha te r re ;  5) Thorn. 

Green [4]. It is evident f rom the figure that for sufficiently large Reynolds numbers good agreement  is ob-  
tained between the experimental  and calculated values. 

Figure 4 gives the resul ts  of our calculations and selected experimental  data of Muscettola cited in [7] 
(Fig. 4a, 4b) and [13] (Fig. 4c), along with semiempir ica l  dependences and corre la t ions  of var ious authors,  
taken f rom the same l i terature  sources .  It is seen that the calculations descr ibe the experimental  data with 
varying degrees  of accuracy .  The discrepancy of the experimental  resul ts  with Levy ' s  relat ion can be a t t r ib-  
uted p r imar i ly  to the fact that the lat ter  ignores the dependence on the mass  flow rate.  

The resul ts  of calculations according to Marcha t e r r e ' s  relat ion,  in which an attempt is made to account 
for the influence of G and d, exhibit poor  agreement  with the experimental  data, mainly because of a s t rong de-  
pedence on the pipe diameter .  This dependence is not so marked in the experimental  resul ts .  

Calculations based on Martinelli  and Nelson 's  relat ion,  in which again the depddence on the mass  flow 
rate is ignored, are  in much bet ter  agreement  with the experimental .  The discrepancy inc reases ,  however,  
with the value of the mass  flow rate. 

The agreement  between the resul ts  of our calculations and the experimental  data, on the other hand, im-  
proves  with increasing mass  flow rate. The mass  flow enters  into the express ion for  OL0 in te rms  of the drag 
coefficients,  but sca rce ly  any strat if icat ion with respec t  to G is observed.  

Y 
U , V  

P 
T 

l 
c , ~  
6 

d 
% 

G 

of, ~ 
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NOTATION 

is the t r ansver se  coordinate; 
are  the longitudinal and t r ansve r se  velocity components; 
is the density; 
is the fr ict ional  s t r e s s ;  
is the mixing length; 
are  the mass  and volume concentrat ions,  respect ively;  
is the boundary layer  thickness;  
is the Martinelli pa rame te r ;  
is the pipe diameter ;  
is the Karman constant; 
is the mass  flow rate per unit a rea ;  
are  the coefficients of fr ict ion in boundary- layer  and pipe flows; 
is the dynamic viscosi ty;  
are  the reduced velocit ies of liquid and gas; 
is the relative mass- f low gas content; 
is the p res su re ;  
r e fe r s  to fluctuation component. 

I n d i c e s  

m ,  w 

/ , g  
0 

are  the pa rame te r s  at upper boundary of boundary layer  (or pipe axis) and wall; 
a re  the liquid and gas; 
is the standard flowj 
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G A S  D I S T R I B U T I O N  IN A D E E P  G R A N U L A R  

B E D  I N J E C T E D  BY F L A T  J E T S  

Y u .  A.  B u e v i c h ,  N.  A .  K o l e s n i k o v a ,  
a n d  A .  N .  T s e t o v i c h  

UDC 66.096.5 

The gas-f low dis t r ibut ion is examined for  a se t  of identical  equidistant  f lat  je t s  en ter ing  a deep 
immobi le  or  fluidized bed. 

The re  is cons iderable  engineer ing in t e re s t  in the dis tr ibut ion of the gas injected as je t s  into a granular  
bed; this appl ies  pa r t i cu l a r ly  in the s imulat ion of exchange in catalyt ic  r e a c t o r s  and other  equipments .  Also ,  
the gas dis t r ibut ion is e x t r e m e l y  impor tan t  to je t  f luidization,  which tends to occur  with many exis t ing gas -  
d is t r ibut ing gr ids ,  and a lso  has a bear ing  on the s t ruc tu re  of the bed near  the wall  in the fluidized s ta te ,  as 
well  as on the shape of any stagnant  zones ,  and so on. 

A genera l  method has  been given [1] for  solving two-dimens ional  p rob l ems  in gas dis tr ibut ion.  Here  s 
we use  the bas ic  assumpt ions  of [1]: i t  is supposed that we can neglect  the var ia t ion  in the dynamic  gas p r e s -  
sure  along the je t s  by compar i son  with the p r e s s u r e  change within the dense phase  of the bed,  in which case the 
p r e s s u r e w i t h i n  a j e t  may  be taken as constant.  The hydraul ic  r e s i s t ance  to the flow enter ing  the dense phase  
is taken as a l inea r  function of the inf i l t rat ion speed,  while the coefficient  of propor t iona l i ty  is independent of 
the coord ina tes ,  i . e . ,  we consider  a l inear  case  in inf i l t rat ion theory.  Since the gas speed is usual ly  much 
g r e a t e r  than the speed of the r egu la r  pa r t i c le  motion in the dense phase ,  we consider  the l a t t e r  as an immobi le  
porous  body. The effects  of the upper  boundary of the bed a r e  neglected,  which is just i f ied if the height of each 
je t  is much l e s s  than the height of the bed. 

The je t s  a re  cons idered  as enter ing f r o m  the bottom upward and may be s imula ted  [1] by means  of a s y s -  
tem of sect ions  x '  = 2nLh, 0 <- y '  -< h (n = 0, +1, +2, ... ) in the complex plane z' = x '  + iy ' ;  within the f r a m e -  
work  of this ex te rna l  t r e a t m e n t  [1], the length h of a sec t ion ,  which c h a r a c t e r i z e s  the height of the j e t s ,  is 
taken as given a p r io r i .  Some informat ion has been published [2] on the dependence of h on the d imensions  of 
the injection s lo ts ,  the bed p a r a m e t e r s ,  and the gas speed at  the slot  level .  Also ,  Lh is equal to half  the d i s -  
tance between the je ts .  
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