NOTATION

Py is the injection pressure in injector capillary;

Pr is the pressure at exit from receptor capillary;

Pimax is the pressure in injector capillary with jet at the stability threshold;
Py omax is the pressure in receptor capillary with jet at the stability threshold;
i is the distance between orifices of injector and receptor capillaries;
L is the distance from capillary axis to reflecting surface;

d is the inside diameter of capillary;

w is the acoustic frequency;

Re = ud/v is the Reynolds number;

u is the average flow velocity;

v is the kinematic viscosity;

St = u/wl is the Strouhal number,
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FRICTION AND THE VELOCITY AND GAS-CONTENT
PROFILES OF A TURBULENT GAS - LIQUID FLOW

A, V. Gorin UDC 532,529.5

The limiting relative friction law is used to derive analytical expressions for the frictional stress
as well as the velocity and gas-content distributions in the cross section of a boundary layer and a

pipe.

Only a limited number of theoretical papers to date has any attempt been made to solve the problem of
calculating the hydrodynamic characteristics associated with the turbulent flow of gas—liquid mixtures. In the
majority of those papers the two-phase system is regarded as a locally homogeneous medium amenable to the
methods and assumptions commonly used in the theory of single-phase turbulent flows. For example, Bankoff
[1] postulates that the tangential stress is uniform throughout the channel cross section and the mixing length
is the same as for single-phase turbulent flow, Brown and Kranich [2] use a logarithmic distribution function
for the velocity of the mixture in the bubble-flow regime, neglecting the relative velocity between the phases.
Beattie [3] treats the bubbles as cavities distributed in proportion to the velocity distribution of the liquid and
adopts the same assumptions as in {1]. Levy [4] has derived distributions of the velocity and density of the
mixture and the pressure drop on the basis of Van Driest's modification of mixing-length theory. Here the
turbulent constants are considered to be the same as for single-phase liquid flow. Sato and Sekoguchi [5] re~
gard the bubbles as cavities, the presence of which has the effect of creating fluctuations of the liquid velocity
(over and above the independently existing single-phase turbulent fluctuations of the liquid velocity) due to flow
around bubbles. This process induces additional turbulent stresses. The bubble function is considered to be
a given quantity. Kashcheev and Muranov [6] have calculated the velocity profile of 2 mixture for annular-
mist flow, replacing the two-phase core by a homogeneous flow and invoking the basic assumptions of semi-
empirical turbulence theories.

The fundamental problem that arises in the realization of a locally homogeneous model is whether or not
it is justified to use the turbulence constants for single-phase flow. Tong [7], for example, concludes on the
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basis of an analysis of the experimental data that the value of the mixing-length constant at a certain distance
from the wall is much smaller than for the single-phase liquid,

In the present article we calculate the friction losses and of velocity and gas-content distributions of the
mixture in the cross section of the flow channel on the basis of the theory of the limiting relative friction law
developed for a turbulent boundary layer of a compressible gas.

We regard an isothermal two-phase system as a continuum with physical properties that depend on the
gas content, and for the turbulent frictional stress T we use the equation [4]

T=pu'v'+ up'v, @
in which the overbar signifies time averaging in the customary sense for turbulence problems.

The fluctuation components are determined as follows in accordance with mixing-length theory (on the
assumption that the turbulent transfer of momentum and density is identical):

w'=1'= I(duldy), p'= 1 (dpldy);

the transverse coordinate y is measured away from the plate (channel wall).

Substituting these expressions into Eq. (1), we obtain

du dpu @)
=2 &%
l ay dy

To determine the relationship between o and U (we drop the overbar from now on) we assume similarity

of the velocity and mass-concentration fields:

2 = | @)

The following expression holds for the local density of the two-phase system:
p=p, (1—9) +pg0.
The volume concentration ¢ is related to the mass concentration c by the equation
¢ = gp,/p. 4)
From expressions (3) and (4) we obtain for the density of the medium (assuming that cy, = 0)

SR ./ S— ®)
1 —A(ulu,,)

p
Here A = 1-p}/op.
Thus, on the basis of (5) we can write Eq. (2) in the form

{ du \2
_ du ) 6
o (1——Au/um dy) ©

We use the relative formulation of [8, 9] for the friction law, generalized in [10}. As the "standard"
flow we take an incompressible fluid flow with parameters corresponding to the values for our compressible
fluid at the outer boundary of the boundary layer (channel axis). Hereinafter we designate the standard-flow
parameters by subscript zero.

We introduce the dimensionless variables
o=10ulu,; T="1/T,; T=1/8; &=yl c;= 27,/ppttm

whereupon Eq. (6) acquires the form

PR SR SR
2 ° P\ T ¥ 1—4o ™

with
¥ = (Cf/Cjo)Re . (8)
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In (8) the comparison is made for Re = idem.

We integrate Eq. (7) across the layer so that

1
1/2 2, o~ 12
P J b T 1 — Ao

(o3

where
1
Z=(c/2)'” | (1) &
&:

It has been shown [8] that as Re — = the quantities w; ~ 0, &, — 0, and Z — 1, We postulate that
T/t =1, [jI, = k = const, (10)

and k characterizes the influence of the "second" phase on the mixing length in the mixture. It then follows
from (9) that as Re — =

q,-m — _EL [ kll’l (pm/pl) ]2 . (]-1)
pm 1 — pl/pm
We now obtain the velocity and density distributions of the medium, Integrating Eq. (7), we write
1 ~ - 1
e\ L (7% L\ _do _S' ﬂ;)”z_“i
(pm jfo(% ¥/ 1—As e ) & 12
® H

It has beenr shown [9] that

=1—g, (13)

Re-+ o

1
1/2
j(35) ¢
¢ 0
where wy =(1+1/%g(cgy/ 2)1'/2 In £ isthe dimensionless velocity under standard conditions and n, is the K4rmén con-
stant for single-phase flow. Equation (12) therefore takes the form

1
12 s,z 1/2
(fz_) [ (= 1_) D _1—s.
Om J L\t ¥ 1l —Ae
©

For large values of the Reynolds number Eq. (13) goes over to the limiting expression, so that as Re — = we

obtain approximately
LN A g L (ﬁ)w Int,
lh 7T 1—Ae- % \ 2

whence, bearing relations (10) and (11) and mind, we readily deduce

e &N 1 —py ,
o ( : pm)/( 0u/om) (14)

where the power exponent n is given by the expression

y\1/2
ne L (f_) m(&n_).
% \ 2 Loy

For the density distribution across the layer (channel) we have, according to (5),

£=n

P="0Pms "
The distribution of the concentration obeys the law

[y e // pg\
SN O e m; 1— &% 15
¢ ( o ) I\ ! (19)
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Fig. 1. Comparison of calculated true
gas-content profiles (solid curves) with
experimental data of [12] (points). 1)
d =24 mm, w; = 0,5 m/sec, wh = 1,44
m/sec; 2) 24 mm, 1.5 m/sec, 2.83 m/
sec; 3) 69 mm, 1.5 mm/sec, 3.4 m/sec;
4) 24 mm, 0.5 m/sec, 4,89 m/sec; 5) 69
mm, 1,5 m/sec, 5.94 m/sec.

We note that in plotting the velocity and gas-content profiles it is not necessary to know k, because it cancels
out in the course of the computations.
The foregoing analysis is valid for a pipe or for a plane channel.

We now consider the case of a circular pipe of radius R. The values of py; and up, on the pipe axis are
found in terms of the mass flow rate of the gas Gg and the total mass flow rate of the gas and liquid G. We de-

fine the average pipe-flow characteristics as follows:
1) the average density of the mixture {p) is defined as

20,,

1
<P>=2S\(1—§)Pd§=m,

0

where ¢ = y/R;
2) the cross-section average velocity of the mixture {(u) has the form
U, [ P 2 } . (16)

I— pl/pm

(w) = P (14-n)(2+4n)

3) the total mass flow rate G across unit area is

Ol [ (P> _1]; an

1
G=2 1 —§) pudt =
BS ( )p l—pllpm Y]

4) the mass flow rate of the gas Gg across unit area can be determined from the relation
1
Gy =20, [ (1 —8) qu,
0

so that the relative mass-flow gas content is given by the expression

Gy,  uy,lCud 1—p/p, 18

G T Tlpg—1 (el —1

X =

1032



“ J—
2 B e nee S

ENNE
.\\
AN

\\S
e

|
i
!
o M ? II | |
3 > ; Co
s = PN ; L
754 - —0 o\ cp< : —
g L |
0’2 o e ”:‘9 o —8 r © [\ [
9 — ¥+ s
/] — i L a7 o/ | P ; \_f
Y ¥ g og ol TR % 2 092 g IR

Fig, 2, Comparison of calculated velocity (u, m/sec) and
gas-content profiles (solid curves) with experimental data of
{3]. 1) Velocity; 2) gas concentration; a) d = 80 mm, G =
1000 kg/m?®sec, {¢) = 0.211, P = 20.2+10° N/m?; b) d = 25.1
mm, G = 3799 kg/m?sec, X = 0.155, P = 50+ 10° N/m?; dashed
curves: approximation curves from [11], ¢/pm = 1—£588; u/
uy =1 _53.77.

For stabilized pipe flow the expression for ¥, must be written with regard for the ratio (up,)/(u), be-
cause in boundary-layer theory the coefficient of friction is referred to the maximum velocity; for pipe flow
this coefficient is referred to the mass-flow average velocity. On the basis of these considerations we write
for stabilized conditions

¥, = | T - T T Cud w) \ PP
“”[m%f,/(pmuﬁ,)o]h—[pm<u>z/( pm<u>2)o]Re u, /( u, )0]

whence with regard for (16) we obtain

—II}w = \‘—C—-J == ‘Fw [ 1 — pl/pm ]2 hz,
% Jre 1—20/p, (1 + 1) 2+ n)™"
where h = ({w))/um)o; £ = 2Tw/(0m (WP).

The graphical dependence of h on Re for isothermal flow in smooth pipes is given in [8]. The relation
for the exponent in the velocity and gas-content distributions takes the form

h Lo \/2 [Y )
n=— - In{ -1, 19)
2ny ( 2 ) ( 0y

Solving Egs. (17) and (18) with regard for the expression (19) for n, we can determine py, and uy,.

The profiles obtained for the velocity (14) and the true gas content (15) with the exponent n calculated
according to (19) are compared in Figs. 1 and 2 with certain experimental data [3, 12], The friction coeffi-
cient ¢, is determined according to Prandtl law

07 =21g (Rety’”) — 0.8, Re = 2GR/,

As is evident from the graphs, the theory predicts a relatively flat distribution of the true volume con-
centration of gas ¢ in the pipe cross section (Fig. 1), Some discrepancies of the calculated profiles in the
immediate wall zone are to be expected, because the calculations are carried out for Re — =, making it pos-
sible to exclude the viscous sublayer from consideration, but error is nonetheless introduced. It is important
to note the good agreement between theory and experiment for the velocity distribution of the gas—liquid mix-
ture (Fig. 2).

Using the expressions derived above for the average flow characteristics of a gas —liquid mixture, we
obtain an expression for the Martinelli dimensionless group @io, defined as follows:

81.' 9
— " — D, (20)
0, (G/py)?
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Fig. 3. Comparison of the results of fric-
tion calculations (dashed curves) with the
calculations of Levy (solid curves) and ex-
perimental data [4] for flow of boiling wa-
ter in a vertical channel at P = 140-10° N/
m?, a) G = 3.4- 10° kg/m’h, Re = 53,000,
channel dimensions 690 mm X 25.4 mmX
2.5 mm; b) G = 7.3+ 10° kg/m’h; 1) channel
690 mm X 25,4 mm X 2,5 mm; Re = 112,000;
2) channel 690 mm X 25.4 mm X 1,3 mm,
Re = 60,000; ¢) G = 19.5-10° kg/m’h, Re =
300,000, channel 690 mm X 25.4 mm X 2,5
mm,

where A is the friction coefficient for single-phase fluid flow with total mass flow

1
T = g Aoy (Glp,)%,

which corresponds to the tangential stress for single-phase liquid flow, and

(I)Eo = T,,/T0G- (21)
Using relation (17) for the mass flow rate per unit area, we obtain
81, 8px2

= 22
0, (G/py)* (IT—<p>/p)? - ®2)

Here 8 = pl—pm/pmuml/uo('rw/pl)i/ ? is a parameter introduced by Levy. Let us examine it in closer detail,
We represent it in the form

p— (_p,__l) 1 (fi T _Pn_L)’”z__A_ (ﬁ 273 W)
Om Ho T, Prtm O %o o, 2 )
For large values of the Reynolds number ¥ — ¥, and for 8 we obtain approximately 8 = kn. We finally have

OFoh = 822 [1 — P _2——]'2 . (23)

o (1—n)2—n)

The results of our calculation of the Martinelli parameter &2 o (dashed curves) according to (23) for k=
1 are compared in Fig. 3 with the calculations of Levy [4] (solid curves) and the experimental data of Sher and
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Fig. 4, Comparison of the results of friction calculations with experimental data of Mus-
cettola from [7] (a, b) and [13] (c) and with the results of other authors for P = 70-10° N/
m? a)d=5mm:I) G =115 kg/m’sec, Re = 5000; IT) G = 43. 7 kg/m’sec, Re = 22,700; b)
d=10.1 mm:I) G = 11.0 kg/m?sec, Re = 11,500; IT) F = 31,8 kg/m?sec, Re = 33,400; ¢) d =
8.2 mm: I) G = 10,7 kg/m?sec, Re = 9100; I) G = 40,1 kg/m®sec, Re = 34,200; 1) data of
Levy; 2) Martinelli andNelson; 3) present calculation; 4) Marchaterre; 5) Thom.

Green [4]. It is evident from the figure that for sufficiently large Reynolds numbers good agreement is ob-
tained between the experimental and calculated values,

Figure 4 gives the results of our calculations and selected experimental data of Muscettola cited in [7]
(Fig, 4a, 4b) and [13] (Fig. 4c¢), along with semiempirical dependences and correlations of various authors,
taken from the same literature sources. It is seen that the calculations describe the experimental data with
varying degrees of accuracy. The discrepancy of the experimental results with Levy's relation can be attrib-
uted primarily to the fact that the latter ignores the dependence on the mass flow rate.

The results of calculations according to Marchaterre's relation, in which an attempt is made to account
for the influence of G and d, exhibit poor agreement with the experimental data, mainly because of a strong de-
pedence on the pipe diameter. This dependence is not so marked in the experimental results,

Calculations based on Martinelli and Nelson's relation, in which again the depddence on the mass flow
rate is ignored, are in much better agreement with the experimental, The discrepancy increases, however,
with the value of the mass flow rate.

The agreement between the results of our calculations and the experimental data, on the other hand, im-
proves with increasing mass flow rate., The mass flow enters into the expression for @io in terms of the drag
coefficients, but scarcely any stratification with respect to G is observed.

NOTATION

y is the transverse coordinate;

u, v are the longitudinal and transverse velocity components;
o is the density;

T is the frictional stress;

l is the mixing length;

c, @ are the mass and volume concentrations, respectively;
o is the boundary layer thickness;

of, is the Martinelli parameter;

d is the pipe diameter;

" is the Kdrmdn constant;

G is the mass flow rate per unit ares;

cf, ¢ are the coefficients of friction in boundary-layer and pipe flows;
) is the dynamic viscosity;

wy, Wy are the reduced velocities of liquid and gas;

X is the relative mass-flow gas content;

P is the pressure;

! refers to fluctuation component.

Indices

m, w are the parameters at upper boundary of boundary layer (or pipe axis) and wall;
l,g are the liquid and gas;
0 is the standard flow,
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GAS DISTRIBUTION IN A DEEP GRANULAR
BED INJECTED BY FLAT JETS

Yu. A. Buevich, N, A, Kolesnikova, UDC 66.096.5
and A, N, Tsetovich

The gas-flow distribution is examined for a set of identical equidistant flat jets entering a deep
immobile or fluidized bed,

There is considerable engineering interest in the distribution of the gas injected as jets into a granular
bed; this applies particularly in the simulation of exchange in catalytic reactors and other equipments, Also,
the gas distribution is extremely important to jet fluidization, which tends to occur with many existing gas-
distributing grids, and also has a bearing on the structure of the bed near the wall in the fluidized state, as
well as on the shape of any stagnant zones, and so on.

A general method has been given [1] for solving two-dimensional problems in gas distribution. Here s
we use the basic assumptions of [1]: it is supposed that we can neglect the variation in the dynamic gas pres-
sure along the jets by comparison with the pressure change within the dense phase of the bed, in which case the
pressure within a jet may be taken as constant. The hydraulic resistance to the flow entering the dense phase
is taken as a linear function of the infiltration speed, while the coefficient of proportionality is independent of
the coordinates, i.e., we consider a linear case in infiltration theory., Since the gas speed is usually much
greater than the speed of the regular particle motion in the dense phase, we consider the latter as an immobile
porous body. The effects of the upper boundary of the bed are neglected, which is justified if the height of each
jet is much less than the height of the bed.

The jets are considered as entering from the bottom upward and may be simulated [1] by means of a sys-
tem of sections x' = 2nLh, 0 =y'=h (n =0, £1, %2, ...) in the complex plane z' = x' + iy'; within the frame-
work of this external treatment [1], the length h of a section, which characterizes the height of the jets, is
taken as given a priori. Some information has been published [2] on the dependence of h on the dimensions of
the injection slots, the bed parameters, and the gas speed at the slot level, Also, Lh is equal to half the dis-
tance between the jets.

Institute of Problems of Mechanics, Academy of Sciences of the USSR, Moscow, Moscow Chemical~
Engineering Institute. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 35, No. 3, pp. 424-431, Septem-
ber, 1978. Original article submitted October 26, 1977,
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